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Simulations on the number of entanglements of a polymer network using knot theory
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Polymer networks, created on the computer using the Bond-Fluctuation-Algorithm, offer the possibility to
count the number of entanglements. We generated networks consisting of 5000 chains that were cross linked
at their end groups via tetra-functional cross linkers. The analysis of the topology was performed by computing
the Homfly polynomial of the entanglements offering a much more precise determination of the knot and
entanglement type than the Gaussian linking number. It also allows us to determine the influence of Brunnian
links. Results concerning the connection between the chain length and the number of entanglements are shown.
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I. INTRODUCTION

Structural properties play an important role in understa
ing the mechanical behavior of polymer systems. The role
entanglements, in particular, during the deformation proc
is still not exactly understood—it is known that topologic
links exist besides the chemical cross links, but their amo
and type is unknown. Since the works of Vologodskiiet al.
@1,2#, who determined the knot types formed in simulatio
of ring-shaped single polymer chains using the Alexan
polynomial, a lot of work was done in determining the t
pology of DNA @3,4# and of simple polymer systems@5–10#
with the Alexander polynomial. In our approach, we det
mine the link types of the entanglements of a polymer n
work using the Homfly polynomial@11#, which can distin-
guish the different knot and link types with a much high
precision. We will thus be able to give a good prediction
the number of topological links per mesh of polymer n
works with differing precursor chain length. In Sec. II, w
introduce the simulation algorithm used to obtain our resu
In Sec. III, we show how to apply knot theory to determi
the entanglement types. The results of the investigations
reported in Sec. IV.

II. SIMULATION ALGORITHM

The algorithm used for creating polymer networks is t
bond-fluctuation algorithm, first introduced in Ref.@12#. It
works as follows: The monomers are represented by cu
occupying eight sites on a lattice. They are connected b
set of 108 bond vectors that correspond to Kuhn segme
The choice of the bond vectors ensures that the self av
ance of the monomers automatically implies the cut avo
ance of the bonds. Dynamics are obtained by random ju
of the monomers of one lattice unit. After polymerizatio
we relaxed the melt up to equilibrium. After that, a stoich
metric number of tetrafunctional cross linkers is inserted
the melt. Whenever a cross linker is in next-neighbor d
tance to a chain end it attaches to it and further diffu
together with the chain until it is attached to four chain en
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@13#. We stopped the reaction at a 95% conversion ratio
to a pronounced slow down in the cross-linking process. T
characteristics of the simulated systems are summarize
Table I. For the networks N11-N38 we built three indepe
dent networks. Due to only small differences present,
show one representative network here.

The main parameter varied was the precursor chain len
ranging between 11 and 241 monomers per chain. The n
ber of chains was mostly 5000, chosen in order to get g
statistics. The overall number of monomers in the syst
varied between 150 000 and 1 250 000. We performed si
lations with an occupation density of 64%~labeled withN)
and 46%~labeled withA) as a prefix to the chain length. Th
last two rows denote the overall number of meshes and
average number of chains per mesh for the different n
works.

III. ANALYSIS OF ENTANGLEMENTS
USING KNOT THEORY

In order to compute the type of the entanglements, i
necessary to find a decomposition of the network in
meshes. The algorithm used for obtaining a decompositio
described in detail in Ref.@14#. Since small meshes will firs
hinder the deformation, the goal was to find a spanning t
for which the sum of lengths of the meshes is minimal.
applying weightings to the chains and optimizing the ord
of adding chains to the tree one obtains a decomposition
the meshes contributing most to the strain during the de
mation process.

A method frequently used to study the topology of po

TABLE I. Overview of the simulated networks. ‘‘occ. dens.
hereby refers to the occupation density in monomers while ‘‘c
mesh’’ denotes the average ratio of chains per mesh for the
works.

Networks N11 N27 N38 N81 N241 A10 A20 A80

Chains 17128 5418 5116 5418 5176 10560 5280 52
X-linkers 8564 2709 2558 2709 2588 5280 2640 26
Occ. dens. 0.64 0.64 0.64 0.64 0.63 0.48 0.47 0.
Meshes 6916 2200 2067 2200 2093 4534 2055 21
Ch./mesh 6.15 6.43 6.68 7.15 7.70 5.71 6.18 6.
©2001 The American Physical Society01-1
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mer networks is the Gaussian linking number~GLN! intro-
duced to polymers in@15,16#. It was immediately attacked b
Vologodskii et al. @1# as being inadequate, but remained
often-used method for characterizing links@17–20#. In fact,
the GLN has serious shortcomings that restrict its applica
ity to networks with short chains where only the simple
types of entanglements occur. It can, in detail, only det
two-component links, gives almost no information about
topological shape, and even simple links such as the Wh
head link 51

2 are not detected. Therefore, we used the Hom
Polynomial to gain more precise information. In order to
able to calculate it, several steps have to be performed.
entanglements as present in the networks often have se
hundreds of crossings. We thus used the reduction algor
proposed by Ref.@21# to perform a triangle reduction of th
chains. This decreased the number of crossings in the re
ing graph to less than 20% of the original number. As
second step, one has to find a projection that both contain
few crossings as possible and in which no vertex lies in
same projection direction as a line. This was achieved
choosing the best out of 50 random projections of the
tanglement on a unit sphere resulting in a further reduc
of 70%.

We first investigated the Alexander polynomial using
improved version of the Vologodskii algorithm that has t
advantage of a faster computation in order to eliminate triv
knots and links from the set of entanglements. As a s
effect of the computation of the Alexander polynomial, t
GAUSS code for the entanglements was determined. The
culation of the Homfly polynomial from theGAUSScode was
performed using the program of Gouesbetet al. @22#, who
calculate it using a skein-template algorithm. TheGAUSS

code of a link, as well as the computation algorithm, a
described in detail in their paper. An algorithm for the ana
sis of the polynomials determined the type for all knots w
up to 10 crossings, all prime links with up to 9 crossings a
all factor links with up to 11 crossings. For links with iden
tical Homfly polynomial, the link with the fewer number o
crossings was assigned. The number of links where no
type could be assigned was small for all networks with
exception of N241. Here, 1/3 of the polynomials could n
be associated with a link type. Two reasons are respons
for this fact. First, we restricted our investigations to lin

TABLE II. Frequency of occurrence of the simplest prime a
factor knots for the different networks. The symbol # refers to
product of the two knots.

Networks No of meshes 31 41 51 52 .5 31#31 31#41

A10 4533 4 0 0 0 0 0 0
N11 6918 15 0 0 0 0 0 0
A20 2049 8 1 0 0 0 0 0
N27 2203 41 4 0 0 0 0 0
N38 2069 60 5 0 0 3 0 1
A80 2125 132 8 2 6 4 0 0
N81 2200 185 23 12 7 4 1 2
N241 2093 468 97 22 41 91 37 26
01280
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with a number of crossings smaller than 41 after reduct
due to a steep increase of the computation time for the H
fly polynomial. Second, prime links with a higher number
crossings than nine in the minimal projection could not
detected.

IV. RESULTS

We first present the results concerning single mesh
Table II shows the probabilities of the different knot typ
for the networks simulated.

As expected, the meshes of the network N11 alm
solely form a simple loop. In contrast, 37% of all meshes
network N241 already form a nontrivial knot. The probabi
ties for the networks of lower density are significantly low
for all knot types. The relative probabilities of the knot typ
show a rapid decrease with increasing number of crossi
When comparing the relative probabilities of the differe
knot types with the same number of crossings, one obta
results comparable with Ref.@5#. For example, the probabil
ity to form the knot 52 is twice as high as for the knot 51 in
network N241.

Drawing the probability of forming a nontrivial kno
against the precursor chain length in a semilogarithmic p
an exponential decrease shows up~Fig. 1!.

The fit is of the form P(N)5exp(2N/N0) with N0

FIG. 1. Semilogarithmic plot of the probability of a mesh
form a trivial knot versus the precursor chain length.

e

TABLE III. Frequency of occurrence of the simplest prim
links. Link types with up to 9 crossings could be detected.

Networks 21
2 41

2 51
2 61

2 62
2 63

2 .6

A10 3632 38 3 0 0 0 0
N11 9887 190 7 2 2 1 1
A20 3973 98 12 4 0 1 0
N27 8448 388 35 7 5 15 34
N38 12187 768 83 21 22 34 67
A80 16579 1969 408 112 94 105 386
N81 23796 3259 770 184 203 207 896
N241 20846 4348 1598 548 442 615 374
1-2
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TABLE IV. Frequency of occurrence of the simplest nonprime links. Link types with up to 11 cross
could be detected.

Networks 31 and 01 31 and 31 41 and 01 31 and 41 51 and 01 52 and 01 .5

A10 4 0 0 0 0 0 0
N11 40 0 0 0 0 0 0
A20 20 0 0 0 0 0 0
N27 421 10 2 7 0 7 4
N38 736 20 20 4 0 23 46
A80 2309 100 148 12 32 114 59
N81 4424 346 621 159 183 127 173
N241 16 741 2918 3337 2157 682 1175 388
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53219. This is in good agreement with simulations of K
niaris and Muthukumar@7#, who found an exponent ofN0
52400 in a rod-bead model with a bead radius ofr 50.2 that
is roughly comparable with the bond-fluctuation mod
However due to the comparatively small chain length, a
ear fit still yields a good approximation as well.

A summary of the results concerning links is presented
Table III.

It gives the probabilities of the most frequent prime lin
types for all networks investigated. The simple Hopf-link1

2

plays a dominant role for all networks simulated. The f
quency of occurrence again rapidly decreases with increa
number of crossings. Interestingly, network N241 has a
creasing number of Hopf links compared with network N8
This fact indicates that higher link types and especially n
prime links play an important role for large networks as a
pointed out by Table IV.

Table IV presents the analogous results for nonpri
links. The notation, e.g., 31 and 31 means that two knots o
type 31 are entangled in the form of a Hopf-link 21

2 with 31

knots as the components. For the small networks, almos
links are prime links. With increasing chain length, the no
prime links get more important and already contribute
major part for N241.

In Fig. 2, the number of topological links per mesh

FIG. 2. Dependency of the number of topological links per me
versus the radius of gyration for the network N81.
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plotted via the radius of gyration for the networks A80 a
N81, showing a linear increase both for low- and hig
occupation density with a higher slope for the high-dens
network. The largest meshes form three topological links
the average.

In Fig. 3, the number of topological links per mesh for t
networks with high-occupation density is plotted.

The triangles refer to the number of links obtained wh
assuming that one entanglement only forms one topolog
link, namely the Hopf-link 21

2. The squares present the r
sults when taking into account that higher link types c
form several topological links per entanglement. Both sh
an almost linear increase with the precursor chain leng
While only few links occur for the network N11, each me
already forms more than four topological links for the ne
work N241. The slope for network N241 is slightly lowe
than for the other networks. This might be due to an incre
ing number of meshes from nontrivial knots diminishing t
radius of gyration of the meshes.

In computing the ratio between the number of topologi
links versus the number of chemical cross links, one fin
that while the number of chemical cross links is much high
for network N11, the opposite is true for network N24
Here, 80% of the links are topological, while only 20% a
chemical.

h FIG. 3. Additional topological links per mesh for the networ
with 64% occupation density.
1-3
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Finally we show the results obtained for Borromean rin
It is the simplest Brunnian link, for which no two compo
nents are entangled, but all together form a link. Figure
presents the number of Borromean rings for the netwo
N11 to N81.

A rapid increase in the number of occurrences is found
the network N81, every fourth mesh is part of a Borrome
ring. The graph shows a quadratic fitP(x)5a1bx1cx2 for
the data with the parametersa511.014,b522.001, andc
50.10021. However, due to the small chain length, an ex
nential fit is also possible. The increase indicates that Br

FIG. 4. Absolute number of Borromean rings found in the n
works N11, N27, N38, and N81.
d

ii,

a

hit

01280
.

4
s

n
n

-
n-

nian links play a non-negligible role in counting the numb
of entanglements for large networks.

V. SUMMARY

The investigations performed aimed at giving a good p
diction for the number of topological links in a network
After creating a network in the computer, we decompose
into small meshes. The analysis of the entanglements
performed using the Homfly polynomial ensuring a ve
high precision for the determination of link types. We foun
an exponential decrease of the probability of a trivial knot
be found versus the chain length. Concerning links, a lin
increase of the number of topological links per mesh w
obtained when plotted both versus the radius of gyration
the precursor chain length. For the network N241, a sign
cant number of entanglements form two or more topologi
links. The ratio between the number of topological links a
the number of chemical cross links raised up to 4:1 for n
work N241. Finally, a quadratic increase of the number
Borromean rings with the precursor chain length was
tained.

ACKNOWLEDGMENTS

The authors would like to thank Mr. Meunier-Guttin
Cluzel for providing us with his program for determining th
Homfly polynomials. Wolfgang Michalke wishes to than
the Deutsche Forschungsgemeinschaft for financial sup
~GO 287/26-1!.

-

hit-

pl.
@1# V. Vologodskii, A.V. Lukashin, M.D. Frank-Kamenetskii, an
V.V. Anshelevich, Zh. E´ksp. Teor. Fiz.66, 2153~1974! @Sov.
Phys. JETP39, 1059~1974!#.

@2# V. Vologodskii, A.V. Lukashin, and M.D. Frank-Kamenetsk
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